Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effects of Na on high pressure phases of CuIn0.5Ga0.5Se2 from ab initio calculation

Identifieur interne : 001375 ( Main/Repository ); précédent : 001374; suivant : 001376

The effects of Na on high pressure phases of CuIn0.5Ga0.5Se2 from ab initio calculation

Auteurs : RBID : Pascal:12-0136762

Descripteurs français

English descriptors

Abstract

The effects of Na atoms on high pressure structural phase transitions of CuIn0.5Ga0.5Se2 (CIGS) were studied by an ab initio method using density functional theory. At ambient pressure, CIGS is known to have chalcopyrite (I42d) structure. The high pressure phase transitions of CIGS were proposed to be the same as the order in the CuInSe2 phase transitions which are I42d → Fm3m → Cmcm structures. By using the mixture atoms method, the Na concentration in CIGS was studied at 0.1, 1.0 and 6.25%. The positive mixing enthalpy of Na at In/Ga sites (NaInGa) is higher than that of Na at Cu sites (NaCu). It confirmed previous studies that Na preferably substitutes on the Cu sites more than the (In, Ga) sites. From the energy-volume curves, we found that the effect of the Na substitutes is to reduce the hardness of CIGS under high pressure. The most significant effects occur at 6.25% Na. We also found that the electronic density of states of CIGS near the valence band maximum is increased noticeably in the chalcopyrite phase. The band gap is close in the cubic and orthorhombic phases. Also, the Nacu-Se bond length in the chalcopyrite phase is significantly reduced at 6.25% Na, compared with the pure Cu-Se bond length. Consequently, the energy band gap in this phase is wider than in pure CIGS, and the gap increased at the rate of 31 meV GPa-1 under pressure. The Na has a small effect on the transition pressure. The path of transformation from the cubic to orthorhombic phase was derived. The Cu-Se plane in the cubic phase displaced relatively parallel to the (In, Ga)-Se plane by 18% in order to transform to the Cmcm phase. The enthalpy barrier is 0.020 eV/atom, which is equivalent to a thermal energy of 248 K. We predicted that Fm3m and Cmcm can coexist in some pressure range.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0136762

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The effects of Na on high pressure phases of CuIn
<sub>0.5</sub>
Ga
<sub>0.5</sub>
Se
<sub>2</sub>
from ab initio calculation</title>
<author>
<name sortKey="Pluengphon, P" uniqKey="Pluengphon P">P. Pluengphon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Faculty of Science, Chulalongkorn University</s1>
<s2>Bangkok 10330</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10330</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bovornratanaraks, T" uniqKey="Bovornratanaraks T">T. Bovornratanaraks</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Faculty of Science, Chulalongkorn University</s1>
<s2>Bangkok 10330</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10330</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ThEP Center, CHE, 328 Si-Ayuttaya Road</s1>
<s2>Bangkok 10400</s2>
<s3>THA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10400</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vannarat, S" uniqKey="Vannarat S">S. Vannarat</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Large-Scale Simulation Research Laboratory, National Electronics and Computer Technology Center</s1>
<s2>Pathumthani 12120</s2>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Pathumthani 12120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pinsook, U" uniqKey="Pinsook U">U. Pinsook</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Faculty of Science, Chulalongkorn University</s1>
<s2>Bangkok 10330</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10330</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ThEP Center, CHE, 328 Si-Ayuttaya Road</s1>
<s2>Bangkok 10400</s2>
<s3>THA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10400</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0136762</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0136762 INIST</idno>
<idno type="RBID">Pascal:12-0136762</idno>
<idno type="wicri:Area/Main/Corpus">002021</idno>
<idno type="wicri:Area/Main/Repository">001375</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0953-8984</idno>
<title level="j" type="abbreviated">J. phys., Condens. matter : (Print)</title>
<title level="j" type="main">Journal of physics. Condensed matter : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ab initio calculations</term>
<term>Bond lengths</term>
<term>Chalcopyrite structure</term>
<term>Coexistence</term>
<term>Copper Indium Gallium Selenides Mixed</term>
<term>Cubic lattices</term>
<term>Density functional method</term>
<term>Electronic density of states</term>
<term>High pressure</term>
<term>Impurity density</term>
<term>Orthorhombic lattices</term>
<term>Phase transformations</term>
<term>Sodium additions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Haute pression</term>
<term>Calcul ab initio</term>
<term>Transformation phase</term>
<term>Méthode fonctionnelle densité</term>
<term>Densité état électron</term>
<term>Coexistence</term>
<term>Cuivre Indium Gallium Séléniure Mixte</term>
<term>Concentration impureté</term>
<term>Addition sodium</term>
<term>Longueur liaison</term>
<term>Réseau cubique</term>
<term>Réseau orthorhombique</term>
<term>Structure chalcopyrite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effects of Na atoms on high pressure structural phase transitions of CuIn
<sub>0.5</sub>
Ga
<sub>0.5</sub>
Se
<sub>2 </sub>
(CIGS) were studied by an ab initio method using density functional theory. At ambient pressure, CIGS is known to have chalcopyrite (I42d) structure. The high pressure phase transitions of CIGS were proposed to be the same as the order in the CuInSe
<sub>2</sub>
phase transitions which are I42d → Fm3m → Cmcm structures. By using the mixture atoms method, the Na concentration in CIGS was studied at 0.1, 1.0 and 6.25%. The positive mixing enthalpy of Na at In/Ga sites (Na
<sub>InGa</sub>
) is higher than that of Na at Cu sites (Na
<sub>Cu</sub>
). It confirmed previous studies that Na preferably substitutes on the Cu sites more than the (In, Ga) sites. From the energy-volume curves, we found that the effect of the Na substitutes is to reduce the hardness of CIGS under high pressure. The most significant effects occur at 6.25% Na. We also found that the electronic density of states of CIGS near the valence band maximum is increased noticeably in the chalcopyrite phase. The band gap is close in the cubic and orthorhombic phases. Also, the Nac
<sub>u</sub>
-Se bond length in the chalcopyrite phase is significantly reduced at 6.25% Na, compared with the pure Cu-Se bond length. Consequently, the energy band gap in this phase is wider than in pure CIGS, and the gap increased at the rate of 31 meV GPa
<sup>-1 </sup>
under pressure. The Na has a small effect on the transition pressure. The path of transformation from the cubic to orthorhombic phase was derived. The Cu-Se plane in the cubic phase displaced relatively parallel to the (In, Ga)-Se plane by 18% in order to transform to the Cmcm phase. The enthalpy barrier is 0.020 eV/atom, which is equivalent to a thermal energy of 248 K. We predicted that Fm3m and Cmcm can coexist in some pressure range.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0953-8984</s0>
</fA01>
<fA02 i1="01">
<s0>JCOMEL</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., Condens. matter : (Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The effects of Na on high pressure phases of CuIn
<sub>0.5</sub>
Ga
<sub>0.5</sub>
Se
<sub>2</sub>
from ab initio calculation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PLUENGPHON (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BOVORNRATANARAKS (T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VANNARAT (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PINSOOK (U.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Faculty of Science, Chulalongkorn University</s1>
<s2>Bangkok 10330</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>ThEP Center, CHE, 328 Si-Ayuttaya Road</s1>
<s2>Bangkok 10400</s2>
<s3>THA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Large-Scale Simulation Research Laboratory, National Electronics and Computer Technology Center</s1>
<s2>Pathumthani 12120</s2>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>095802.1-095802.6</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>577E2</s2>
<s5>354000508447120230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0136762</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. Condensed matter : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effects of Na atoms on high pressure structural phase transitions of CuIn
<sub>0.5</sub>
Ga
<sub>0.5</sub>
Se
<sub>2 </sub>
(CIGS) were studied by an ab initio method using density functional theory. At ambient pressure, CIGS is known to have chalcopyrite (I42d) structure. The high pressure phase transitions of CIGS were proposed to be the same as the order in the CuInSe
<sub>2</sub>
phase transitions which are I42d → Fm3m → Cmcm structures. By using the mixture atoms method, the Na concentration in CIGS was studied at 0.1, 1.0 and 6.25%. The positive mixing enthalpy of Na at In/Ga sites (Na
<sub>InGa</sub>
) is higher than that of Na at Cu sites (Na
<sub>Cu</sub>
). It confirmed previous studies that Na preferably substitutes on the Cu sites more than the (In, Ga) sites. From the energy-volume curves, we found that the effect of the Na substitutes is to reduce the hardness of CIGS under high pressure. The most significant effects occur at 6.25% Na. We also found that the electronic density of states of CIGS near the valence band maximum is increased noticeably in the chalcopyrite phase. The band gap is close in the cubic and orthorhombic phases. Also, the Nac
<sub>u</sub>
-Se bond length in the chalcopyrite phase is significantly reduced at 6.25% Na, compared with the pure Cu-Se bond length. Consequently, the energy band gap in this phase is wider than in pure CIGS, and the gap increased at the rate of 31 meV GPa
<sup>-1 </sup>
under pressure. The Na has a small effect on the transition pressure. The path of transformation from the cubic to orthorhombic phase was derived. The Cu-Se plane in the cubic phase displaced relatively parallel to the (In, Ga)-Se plane by 18% in order to transform to the Cmcm phase. The enthalpy barrier is 0.020 eV/atom, which is equivalent to a thermal energy of 248 K. We predicted that Fm3m and Cmcm can coexist in some pressure range.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60D70K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Haute pression</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>High pressure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Calcul ab initio</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Ab initio calculations</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Transformation phase</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Phase transformations</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Densité état électron</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electronic density of states</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Coexistence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Coexistence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Coexistencia</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Cuivre Indium Gallium Séléniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Copper Indium Gallium Selenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Addition sodium</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Sodium additions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Longueur liaison</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Bond lengths</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Réseau orthorhombique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Orthorhombic lattices</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Structure chalcopyrite</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Chalcopyrite structure</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estructura calcopirita</s0>
<s5>18</s5>
</fC03>
<fN21>
<s1>107</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001375 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001375 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0136762
   |texte=   The effects of Na on high pressure phases of CuIn0.5Ga0.5Se2 from ab initio calculation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024